Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.

Identifieur interne : 002124 ( Main/Exploration ); précédent : 002123; suivant : 002125

New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.

Auteurs : Agnieszka Bagniewska-Zadworna [Pologne] ; Magdalena Arasimowicz-Jelonek [Pologne] ; Dariusz J. Smoli Ski [Pologne] ; Agnieszka Stelmasik

Source :

RBID : pubmed:24812251

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings.

METHODS

Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ.

KEY RESULTS

The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole.

CONCLUSIONS

The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.


DOI: 10.1093/aob/mcu063
PubMed: 24812251
PubMed Central: PMC4030819


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.</title>
<author>
<name sortKey="Bagniewska Zadworna, Agnieszka" sort="Bagniewska Zadworna, Agnieszka" uniqKey="Bagniewska Zadworna A" first="Agnieszka" last="Bagniewska-Zadworna">Agnieszka Bagniewska-Zadworna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany agabag@amu.edu.pl.</nlm:affiliation>
<country wicri:rule="url">Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Arasimowicz Jelonek, Magdalena" sort="Arasimowicz Jelonek, Magdalena" uniqKey="Arasimowicz Jelonek M" first="Magdalena" last="Arasimowicz-Jelonek">Magdalena Arasimowicz-Jelonek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań</wicri:regionArea>
<wicri:noRegion>61-614 Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smoli Ski, Dariusz J" sort="Smoli Ski, Dariusz J" uniqKey="Smoli Ski D" first="Dariusz J" last="Smoli Ski">Dariusz J. Smoli Ski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń</wicri:regionArea>
<wicri:noRegion>87-100 Toruń</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stelmasik, Agnieszka" sort="Stelmasik, Agnieszka" uniqKey="Stelmasik A" first="Agnieszka" last="Stelmasik">Agnieszka Stelmasik</name>
<affiliation>
<nlm:affiliation>Department of General Botany.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of General Botany.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24812251</idno>
<idno type="pmid">24812251</idno>
<idno type="doi">10.1093/aob/mcu063</idno>
<idno type="pmc">PMC4030819</idno>
<idno type="wicri:Area/Main/Corpus">002193</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002193</idno>
<idno type="wicri:Area/Main/Curation">002193</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002193</idno>
<idno type="wicri:Area/Main/Exploration">002193</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.</title>
<author>
<name sortKey="Bagniewska Zadworna, Agnieszka" sort="Bagniewska Zadworna, Agnieszka" uniqKey="Bagniewska Zadworna A" first="Agnieszka" last="Bagniewska-Zadworna">Agnieszka Bagniewska-Zadworna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of General Botany agabag@amu.edu.pl.</nlm:affiliation>
<country wicri:rule="url">Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Arasimowicz Jelonek, Magdalena" sort="Arasimowicz Jelonek, Magdalena" uniqKey="Arasimowicz Jelonek M" first="Magdalena" last="Arasimowicz-Jelonek">Magdalena Arasimowicz-Jelonek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań</wicri:regionArea>
<wicri:noRegion>61-614 Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smoli Ski, Dariusz J" sort="Smoli Ski, Dariusz J" uniqKey="Smoli Ski D" first="Dariusz J" last="Smoli Ski">Dariusz J. Smoli Ski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń</wicri:regionArea>
<wicri:noRegion>87-100 Toruń</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stelmasik, Agnieszka" sort="Stelmasik, Agnieszka" uniqKey="Stelmasik A" first="Agnieszka" last="Stelmasik">Agnieszka Stelmasik</name>
<affiliation>
<nlm:affiliation>Department of General Botany.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of General Botany.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>In Situ Hybridization, Fluorescence (MeSH)</term>
<term>In Situ Nick-End Labeling (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (physiology)</term>
<term>Plant Roots (ultrastructure)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Xylem (cytology)</term>
<term>Xylem (genetics)</term>
<term>Xylem (growth & development)</term>
<term>Xylem (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Hybridation fluorescente in situ (MeSH)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Méthode TUNEL (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (cytologie)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (physiologie)</term>
<term>Racines de plante (ultrastructure)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Xylème (croissance et développement)</term>
<term>Xylème (cytologie)</term>
<term>Xylème (génétique)</term>
<term>Xylème (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Hydrogen Peroxide</term>
<term>Nitric Oxide</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Monoxyde d'azote</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression</term>
<term>In Situ Hybridization, Fluorescence</term>
<term>In Situ Nick-End Labeling</term>
<term>Microscopy, Electron, Transmission</term>
<term>Microscopy, Fluorescence</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Expression des gènes</term>
<term>Hybridation fluorescente in situ</term>
<term>Microscopie de fluorescence</term>
<term>Microscopie électronique à transmission</term>
<term>Méthode TUNEL</term>
<term>Racines de plante</term>
<term>Transduction du signal</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24812251</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>1235-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcu063</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.</AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bagniewska-Zadworna</LastName>
<ForeName>Agnieszka</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of General Botany agabag@amu.edu.pl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arasimowicz-Jelonek</LastName>
<ForeName>Magdalena</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smoliński</LastName>
<ForeName>Dariusz J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stelmasik</LastName>
<ForeName>Agnieszka</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of General Botany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.195</RegistryNumber>
<NameOfSubstance UI="C018656">cinnamyl alcohol dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017404" MajorTopicYN="N">In Situ Hybridization, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020287" MajorTopicYN="N">In Situ Nick-End Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PCD</Keyword>
<Keyword MajorTopicYN="N">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="N">black cottonwood</Keyword>
<Keyword MajorTopicYN="N">cell wall synthesis</Keyword>
<Keyword MajorTopicYN="N">nitric oxide signalling</Keyword>
<Keyword MajorTopicYN="N">pioneer root development</Keyword>
<Keyword MajorTopicYN="N">programmed cell death</Keyword>
<Keyword MajorTopicYN="N">tracheary elements</Keyword>
<Keyword MajorTopicYN="N">xylogenesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24812251</ArticleId>
<ArticleId IdType="pii">mcu063</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcu063</ArticleId>
<ArticleId IdType="pmc">PMC4030819</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):615-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(4):471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Nov;2(6):544-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 May;124(3):379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21052767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2002 Jul;23(13):2096-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12210264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21210817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2011 Aug;18(8):1241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:299-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2004 Jul;2(4):359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Sep;11(5):650-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19689772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):4749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 May 20;429(6989):305-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15152254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 3;168(1):17-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20509918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Sep;99(9):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22917946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1995 Jan;5(1):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2002 Oct;9(10):1057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):489-493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Dec;16(12):1094-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Dec;3(6):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11074384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Sep;42(9):959-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(4):R34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):718-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jul;15(7):361-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20621669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 May;5(5):379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Sep 1;140(1):89-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Oct;44(3):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11199386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:407-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2005 Nov;12 Suppl 2:1542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16247502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Nov;13(11):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18824399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Pathol. 2007 Jun;35(4):495-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Apr;25(4):1314-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Mar;220(5):747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15747145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Feb;52(2):234-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Nov;31(11):1228-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Sep;58:124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22819859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2007;232(1-2):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Aug;236(2):327-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22362137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):260-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jul;68(14):1957-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17467016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Stelmasik, Agnieszka" sort="Stelmasik, Agnieszka" uniqKey="Stelmasik A" first="Agnieszka" last="Stelmasik">Agnieszka Stelmasik</name>
</noCountry>
<country name="Pologne">
<noRegion>
<name sortKey="Bagniewska Zadworna, Agnieszka" sort="Bagniewska Zadworna, Agnieszka" uniqKey="Bagniewska Zadworna A" first="Agnieszka" last="Bagniewska-Zadworna">Agnieszka Bagniewska-Zadworna</name>
</noRegion>
<name sortKey="Arasimowicz Jelonek, Magdalena" sort="Arasimowicz Jelonek, Magdalena" uniqKey="Arasimowicz Jelonek M" first="Magdalena" last="Arasimowicz-Jelonek">Magdalena Arasimowicz-Jelonek</name>
<name sortKey="Smoli Ski, Dariusz J" sort="Smoli Ski, Dariusz J" uniqKey="Smoli Ski D" first="Dariusz J" last="Smoli Ski">Dariusz J. Smoli Ski</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002124 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002124 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24812251
   |texte=   New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24812251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020